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Abstract
A simple extension of existing models for protein crystallization is described, in
which salt ions and charge neutrality are explicitly incorporated. This provides
a straightforward explanation for the shape of protein crystallization boundaries
and the associated scaling properties seen for lysozyme, and can also explain
much of the salt dependence of the second virial coefficient. The analysis
has wider implications for the use of pair potentials in understanding protein
crystallization.

1. Introduction

Protein crystallization is of great practical importance, both as a purification method and since
high-quality crystals are needed for x-ray diffraction work [1, 2]. Under typical conditions
where crystals are obtained, protein–protein interactions appear to be characterized by hard-
core repulsions with short-ranged attractions [3, 4]. For instance, Rosenbaum et al [5]
successfully collapsed the crystallization boundaries for a number of proteins onto the adhesive
hard-sphere (AHS) model [6–8] by matching the second virial coefficient B2. Whilst the
AHS model is frequently used to understand protein crystallization, it is also possible that
crystallization is an energetic ordering transition driven by highly directional interactions. A
model of hard spheres (HS) with sticky patches was introduced by Sear [9] to capture this
important possibility.

In this paper I examine the properties of a simple model for protein crystallization which
takes into account the effects of charge in a very elementary way. Such a model suggests
that some generic aspects of protein crystallization can be explained as a straightforward
consequence of charge neutrality,at least for lysozyme which readily undergoes crystallization.
These various aspects are:

(i) the overall shape of the crystallization boundary;
(ii) a scaling collapse of the crystallization boundary noticed by Poon et al [10] when plotted

as a function of cs/Q2, where cs is the NaCl concentration and Q the protein charge;
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(iii) a similar scaling of the lysozyme solubility data in Guo et al [11]; and
(iv) a similar scaling for B2 noticed by Egelhaaf and Poon [12].

The appearance of cs/Q2 in all of these is very reminiscent of the Donnan membrane
equilibrium [13], where one finds a contribution to B2 equal to Q2/4cs provided one is
in the high-salt limit cs � Qcp where cp is the protein concentration. The effect is well
known in polyelectrolyte theory [14, 15]. This result is usually derived by supposing ideal
solution behaviour and imposing electrical neutrality on the two sides of a semi-permeable
membrane. In the present case, I argue there is an analogous Donnan equilibrium between
protein crystals and a dilute protein solution, with the crystal–solution interface playing the
role of the membrane. The appearance of cs/Q2 as a scaling variable reflects the fact that
the solution (not necessarily the crystal) is in the high-salt limit, as will be explained below.
Donnan’s theory appears to have little to do with the more conventional McMillan–Mayer
approach [16, 17] in which effective potentials between proteins are invoked to explain
crystallization and the effects of added salt, often in the context of DLVO potentials [10]
where Debye–Hückel theory is used to account for the charge interactions. However, a careful
study of the relationship between the two approaches made by Hill in the 1950s indicates that
the two approaches should converge to the same results in the high-salt limit [18].

To apply these ideas to the protein crystallization problem, one constructs a free energy
which enforces the charge neutrality constraint. Small ions can be treated as ideal solution
species, but one must at least incorporate non-ideality of the protein solution, to allow it to
form the ordered phase which represents the protein crystals. The first thing to do is to set up
this general theory.

2. General theory

I suppose the proteins under consideration have a molecular volume Vp; for example lysozyme
is a charged globular protein of approximate size Vp = (π/6) × 4.5 × 3.0 × 3.0 nm3 =
21.2 nm3 [10, 19], or a molar volume NAVp = 12.8 M−1 where NA is Avogadro’s number.
If the protein concentration is cp, the effective volume fraction is φ = Vpcp. In the absence
of charge effects, a baseline model which incorporates a freezing transition to correspond
to protein crystallization will be fully specified by a dimensionless free energy density
f (0) = Vpβ F (0)/V , where F (0) is the free energy of the protein solution or crystal, V is
the system volume, and β = 1/kT . There may be different branches of f (0) to correspond
to the fluid and ordered (crystal) phases. Below I shall consider two possibilities for this
baseline model: Sear’s model of HS with sticky patches, and the AHS model. The full free
energy is obtained from the baseline model by adding in contributions from the coions and
counterions (which I suppose to be univalent) and imposing charge neutrality. If the added salt
concentration is cs , there will be coions at a concentration cs and counterions at a concentration
Qcp + cs . Denoting the dimensionless free energy density for the full model by f , I write

f (φ, φs) = f (0)(φ) + φs[log φs − 1] + (Qφ + φs)[log(Qφ + φs) − 1] (1)

where the last two terms are the ideal mixing terms from the coions and counterions respectively,
written using φs ≡ Vpcs for notational simplicity. Unimportant constants and terms linear in φ

or φs have been dropped. Non-ideality of the small ions is neglected in the present treatment,
although this is certainly a refinement which should be considered for more quantitative work.

This free energy is a function of two density variables: φ and φs . A phase equilibrium such
as between protein crystals and protein solution corresponds to equality of osmotic pressure and
chemical potentials for both components. As a consequence there will in general be different
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values of φs in coexisting phases, a salt repartitioning effect which is not usually taken into
account. To solve for phase equilibria, it is useful to transform f into a semi-grand potential
h(φ, φ(R)

s ) where φ(R)
s ≡ Vpc(R)

s is a dimensionless salt reservoir concentration [20]. To make
this transformation note that the salt chemical potential is

βµs = ∂ f

∂φs
= log φs + log(Qφ + φs). (2)

Now φs → φ(R)
s in the limit φ → 0; therefore βµs = 2 log φ(R)

s . This gives

(φ(R)
s )2 = φs(Qφ + φs) (3)

which is the usual Donnan equilibrium result that the product of the coion and counterion
concentrations takes a constant value in all phases including the reservoir. Solving this gives

φs = [(Q2φ2 + 4(φ(R)
s )2)1/2 − Qφ]/2. (4)

The semi-grand potential h = f − βµsφs and the first two derivatives with respect to φ at
constant φ(R)

s are, after a few lines of calculus,

h = f (0) + Qφ log(Qφ + φs) − (Qφ + 2φs), (5)

∂h/∂φ = ∂ f (0)/∂φ + Q log(Qφ + φs), (6)

∂2h/∂φ2 = ∂2 f (0)/∂φ2 + Q2/(Qφ + 2φs). (7)

The advantage of this transformation is that h is effectively a one-component free energy and
can be treated accordingly. To use these results, one should remember to substitute for φs from
equation (4). For example, the osmotic pressure follows from Vpβ� = φ(∂h/∂φ) − h; i.e.,

� = �(0) + kT (Qcp + 2cs). (8)

This shows explicitly the small ions behaving ideally, at a total concentration Qcp + 2cs .
What is obvious from these results is that there is a crossover in behaviour at Qcp ∼ cs or

salt concentrations of the order Qφ/Vp. The difference in protein volume fraction between the
solution and crystal is often �φ ∼ 0.5. Putting Q ∼ 10, and Vp ∼ 10 M−1, this corresponds
to a crossover salt concentration ∼0.5 M. If the salt concentration is much less than this, there
will be a large osmotic pressure difference between the crystal and the solution due to the
counterions, having the effect of narrowing the coexistence gap. This is the basic reason that
the coexistence boundary occurs at salt concentrations of this order of magnitude in this model.
It is a much larger crossover salt concentration than intuition might have suggested based on
experience with colloidal systems (e.g. Q ∼ 103, Vp ∼ 106 nm3 gives cs ∼ 10−3 M), but then
globular proteins are much smaller than colloids.

On the other hand, typical protein solutions on the crystallization boundary have φ ∼ 0.05,
corresponding to a crossover salt concentration ∼50 mM. For salt concentrations much larger
than this, the effects of salt and charge are subsumed into a scaling variable φ(R)

s /Q2. Since
φ(R)

s is more or less the salt concentration in the solution if the protein concentration is small,
this is a natural explanation for the scaling properties described in the introduction. In the
following sections, I place these arguments on a firm footing, starting with discussions of the
second virial coefficient and the high-salt scaling of solubility, since these are not dependent
on any particular baseline model.

3. Second virial coefficient

Any theory for the free energy of a protein solution contains a prediction for the second
virial coefficient. For the present theory, B2 can be obtained from the osmotic pressure result
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Figure 1. (a) B(0)
2 /BHS

2 for lysozyme, where B(0)
2 = B2 − Q2/4cs , as a function of salt

concentration cs [12]. The dotted line is the average, equation (9), for all data with cs > 0.25 M.
(b) Solubility data for lysozyme from Guo et al [11]. The dashed line is the least-squares fit to the
data, equation (12) in the text.

equation (8) (recalling that equation (4) should be used for φs), or directly by inspection from
equation (7). Either way, as stated in the introduction, B2 = B(0)

2 + Q2/4cs where B(0)

2 is the
contribution from the baseline model. One can prove the same result holds in light scattering
determination since charge density fluctuations are suppressed in the long-wavelength limit.
We can hope that the baseline model is insensitive to the net charge and salt concentration,
so that B(0)

2 is independent of Q and cs , but is there any evidence for this? For lysozyme,
Egelhaaf and Poon [12] have collected experimental data on B2 from the available literature1.
These data are used to construct figure 1(a) which shows B2 − Q2/4cs normalized by the
value expected if lysozyme proteins behave as HS, namely BHS

2 = 4Vp ≈ 85 nm3 (this is
close to BHS

2 = 82.3 nm3 used in [22]). Inspecting figure 1(a), it appears that there is indeed
a data collapse to an approximate plateau for cs � 0.25 M, although a downwards trend of
40% or so can be detected at high salt levels and there may also be a problem if the protein
charge is too small (the ‘rogue’ point with B(0)

2 > 0 is for Q = 3.6). There is considerable
variation in the data, even for measurements at supposedly identical state points, which reflects
the experimental difficulties in obtaining B2. Averaging over all results in the plateau region
in figure 1(a), one arrives at

B(0)

2 ≈ (−2.7 ± 0.2)BHS
2 . (9)

This result can be used as a constraint for any particular baseline model for lysozyme.
Furthermore, the approximate constancy of B(0)

2 as Q and cs are varied suggests that it is
at least reasonable to make the baseline model independent of Q and cs , as is assumed in the
remainder of this paper.

4. High-salt scaling behaviour

In the high-salt limit, a simple result can be obtained for the crystallization boundary
(equivalently the protein solubility) by assuming that the baseline model is independent of
salt and charge, the density in the crystal remains constant, and the protein concentration in

1 Data for B2 is collected from Guo et al [11], Piazza and Pierno [21], Rosenbaum et al [22], Skouri cited in [21],
and Velev et al [23].



Charge and salt effects in protein crystallization 7621

the solution phase becomes very small with the result that the solution can be treated as ideal.
These features are certainly seen for the two specific baseline models discussed below. The
simplifications amount to treating ∂ f (0)/∂φ in equation (6) as a constant independent of Q and
cs in the protein crystal, and taking the dilute limit ∂ f (0)/∂φ → log φF in the solution where
φF is the protein concentration in the solution phase. Equating protein chemical potentials in
the two phases results in

log φF + Q log(QφF + φs,F) = constant + Q log(QφX + φs,X) (10)

where φs,F and φs,X are the salt concentrations in the solution and crystal phases respectively,
and φX is the protein volume fraction in the crystal. The terms in this can be expanded assuming
that φF � 1, φs,F ≈ φ(R)

s , φs,X � QφX, and making use of equation (4) to get

log φF ≈ constant +
Q2φX

2φs,F
. (11)

The prediction is that the logarithm of the protein solubility should be proportional to the
square of the protein charge, and inversely proportional to the salt concentration in the solution.
Figure 1(b) shows that such a law is indeed satisfied for the solubility data for lysozyme from
Guo et al [11]. The best-fit line in figure 1(b) is

log

(
solubility

mg ml−1

)
= (−0.25 ± 0.15) + (0.010 ± 0.001)

Q2

cs/M
. (12)

The predicted slope from equation (11) is φX/2Vp. If we take φX ≈ 0.5 as a reasonable
estimate of the protein volume fraction in the crystal, then φX/2Vp ≈ 0.02 M which around
twice the measured slope. However, there are a number of omitted effects in the present theory
which could account for the discrepancy. Nevertheless, the observation that the logarithm of
the protein solubility is inversely proportional to the inverse salt concentration is apparently
quite common2. Also note that solubility ∼eQ2

indicates a very strong dependence on the
protein charge. This is a natural explanation for the dramatic decrease in solubility around the
isoelectric point described in [1].

5. Two specific baseline models

For lower salt concentrations, the protein solubility is not small and the above treatment needs
refinement. I now consider the minimal extension to the basic model that takes into account
protein non-ideality by specifying a particular baseline model. In this way, the advantage of
an analytic transformation to the semi-grand potential h in equations (5)–(7) is retained. The
baseline model should encompass both the fluid and crystal phases, and have a second virial co-
efficient consistent with the analysis above. One such suitable model has been devised by Sear.

5.1. Sear’s model

Sear’s model comprises HS with ‘sticky patches’ [9]. The HS diameter is σ , chosen such that
πσ 3/6 = Vp (i.e. σ ≈ 3.4 nm for lysozyme). There are ns sticky patches per sphere which
associate in pairs and are characterized by a range rc > σ , an angular width θc, and a depth ε.
The free energy of the fluid (F) phase (I reproduce only the essential details of the model here)
is

f (0)
F (φ) = fHS(φ) + φns [log p + (1 − p)/2]. (13)

2 Reference [1] suggests alternatively that the logarithm of the protein solubility should be proportional to ionic
strength, but this is a poorer fit to the solubility data of Guo et al [11] than equation (12).
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Figure 2. (a) Free energies for the baseline model illustrating metastability of the crystal branch (X)
with respect to the fluid branch (F) for βε � 4.8. (b) Phase behaviour in the (φ, βε) plane for

the full model: solid curves are for the baseline model (Q = c(R)
s = 0), the dashed curve is for

Q = 10 and c(R)
s = 0, and the chain curves are for Q = 10 and c(R)

s = 0.2 M. Other parameters
are ns = 6, rc = 1.05σ , θc = 0.45.

Table 1. Fluid–fluid critical points for Sear’s model showing critical parameter values φ(C) , k(C),
and B(C)

2 for several values of ns .

ns φ(C) k(C) B(C)
2 /BHS

2

4 0.09 16.8 −7.38
5 0.12 7.02 −3.39
6 0.15 3.90 −1.93
8 0.21 1.77 −0.77

In this, fHS is the HS fluid free energy and p is the proportion of non-bonded sites, solving
(1 − p)/p2 = kφgHS where

k = 6(rc/σ − 1)(1 − cos θc)
2eβε (14)

is a dimensionless bond association constant. The association equilibrium includes an
enhancement factor, gHS, for the HS pair correlation function at contact. The second virial
coefficient in this model is given by

B(0)

2 = BHS
2 − (ns/2)kVp. (15)

It is apparent that the fluid phase properties are completely determined by k and ns . The
model predicts fluid–fluid phase separation for sufficiently large values of k, and table 1 gives
the critical point for ns = 4–8. Note that the second virial coefficient at the critical point
in this model provides an marked counterexample to the observation of Vliegenthart and
Lekkerkerker [24] that B(C)

2 /BHS
2 ≈ −1.5 for a wide variety of other models. Whether fluid–

fluid phase separation is metastable in this model depends on the actual values of rc, θc, and
βε, and examples of both are given by Sear.

Sear provides a cell model for the protein chemical potential in an ordered cubic phase,
arguing that osmotic pressure is not important. My approach here is slightly different. I use
the same cell model to specify the free energy and take into account the osmotic pressure. The
results are not essentially different from Sear’s results, although the analysis does highlight an
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important property of Sear’s model (figure 2(a)). Following Sear, the free energy per protein
in the crystal (X) is

f (0)
X (φ)

φ
= C − 3 log

(
a

σ
− 1

)
− log

(
θ3

c

π2

)
− ns

2
βεw

[
(φ − φmin)

δφ

]
(16)

where a/σ = (6φ/π)−1/3 is the unit-cell size relative to the HS diameter. The constant in this
is C = log(Vp/σ

3), provided that fHS ∼ φ(log φ − 1) in the fluid phase as φ → 0. This free
energy is appropriate for φ � φmin where φmin = π(σ/rc)

3/6 is the volume fraction around
which the bonds in the crystal become dissociated. As φ decreases past φmin , the last term in
equation (16) vanishes rapidly. To implement this I have introduced an ad hoc cut-off function
w[(φ −φmin)/δφ] in the last term, where δφ sets the rate at which the cut-off operates. For the
present calculations I take w[x] = 1/(1+e−x) and δφ = 0.01. This cut-off function represents
the way in which the short-range attraction potential falls off with distance in the model. The
actual details may shift the phase boundaries but are not important for the broad picture.

Although several values of the parameters in the model were examined, I only report in
detail here on calculations for ns = 6, rc = 1.05σ , and θc = 0.45 (so the range of the attraction
is rc −σ ≈ 2 Å and the angular width about 26◦). These values were chosen to give quite good
agreement with the crystallization boundaries for lysozyme in the present model. Interestingly,
in a separate analysis Curtis et al [25] also conclude that ns = 6–8 is appropriate, and Oki et al
[26] identify three ‘macrobonds’ between lysozyme molecules from crystallographic data,
again corresponding to ns = 6 contacts per protein.

Figure 2(a) shows the fluid and crystal free energies for ns = 6, rc = 1.05σ , and θc = 0.45,
for two values of βε. It is clear that there is a certain minimum value βε ≈ 4.8 below which the
crystal is metastable with respect the fluid. This is an important contrast with the AHS model
(see the next subsection) in which the ordered phase is present at βε → 0. Crystallization
in Sear’s model is essentially an energetic transition to an ordered phase dominated by the
directional interactions (compare the ‘energetic fluid’ concept introduced by Louis [27]) and
not a continuation of the entropic HS freezing transition. The position of the sticky patches
controls the crystal structure, and, as suggested by Sear, this may explain the relative ease or
difficulty of crystallizing various proteins.

Figure 2(b) shows the phase behaviour for the model for the chosen parameter set. The
solid lines in figure 2(b) are for the baseline model and include representative tie lines. As
βε increases, the fluid–crystal phase transition widens (the re-entrant fluid phase expected at
larger φ is not shown). There is a metastable fluid–fluid phase separation for βε � 7.18.

The effect of charges and added salt is obtained by inserting the baseline model into the
general formalism in section 2. The dashed curve in figure 2(b) shows the fluid–crystal phase
boundary at Q = 10 in the absence of salt. The transition has been markedly narrowed and
the fluid–fluid transition moves to such a high value of βε that it is no longer on the diagram.
Repeating the calculation for c(R)

s = 0.2 M obtains the chain lines in figure 2(b). The fluid–
crystal phase boundary is intermediate between the zero-salt limit and the baseline model, and
the metastable fluid–fluid transition has reappeared in the diagram for βε � 9.14. Finally as
c(R)

s → ∞, the phase boundaries all move back to coincide with the baseline model. Thus the
effect of charge in the model is to strongly suppress existing phase transitions in the absence
of added salt. Adding salt weakens and eventually destroys the effect. The salt concentration
required to do this is cs ∼ Qcp, as discussed already in section 2.

I now set βε = 7.4, marked by an arrow in figure 2(b), so that B(0)

2 /BHS
2 = −2.7

reproduces the value calculated in section 3 above3. Figure 3(a) shows a typical phase diagram
3 Oki et al [26] suggest ‘macrobond’ energies of the order 50 kcal mol−1 ≈ 80 kT � ε but this estimate is for the
bare macrobond energy and does not include re-solvation of the protein surface.
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Figure 3. (a) Phase behaviour in the (φ, cs ) plane for Sear’s model for Q = 10. (b) Fluid–crystal
binodals for Q = 8.0 (triangles), 9.4 (diamonds), and 11.4 (circles). Other parameters are ns = 6,
rc = 1.05σ , θc = 0.45, βε = 7.4.

for the full model at this value of βε, as a function of added salt. Salt reservoir concentrations
have been converted back to actual salt concentrations. The sloping tie lines indicate a salt
repartitioning effect in which the coion concentration is enhanced in the more dilute phases.
In this simple model I have not taken into account excluded volume in the dense phases, so in
reality the salt repartitioning would be more marked (see below for a further discussion on this).
In this representation we can clearly see how adding salt broadens the fluid–crystal coexistence.
Metastable fluid–fluid phase separation does not appear until salt concentrations �2.3 M for
this value of βε. Note that the shape of the fluid–crystal binodal (which I interpret as being the
same thing as the crystallization boundary) is in agreement with common experience. This is
a natural but non-trivial consequence of charge neutrality in the present model.

This calculation is now repeated for Q = 8.0, 9.4, and 11.4, which are the three values of
lysozyme charge examined experimentally by Poon et al. Figure 3(b) shows the crystallization
boundary as a function of added salt, for the three values of Q. Clearly, the higher the charge,
the more the phase transition is suppressed. Finally, these same phase boundaries are replotted
in figure 4(a) as a function of the scaling variable cs/Q2. In this representation, the curves
all collapse to lie on approximately the same quasi-universal crystallization boundary. The
scaling collapse is robust: if the calculations are repeated for different parameter values, the
quasi-universal crystallization curve moves up or down but a similar scaling collapse is always
obtained.

The mean crystallization boundary from figure 4(a) is shown in 4(b), which now includes
the experimental data from Poon et al. There is reasonable agreement on the location of the
quasi-universal crystallization boundary, although it appears there is always some discrepancy
between the shape of the theoretical and experimental boundaries at low φ which recalls the
discrepancy in the slope of the high-salt law in figure 1(b). It is worth re-emphasizing that the
present model is constrained to have the correct B2, at least for cs � 0.25 M. The absence of a
metastable fluid–fluid phase separation agrees with Poon et al who observe that no such phase
transition occurs at the temperature of the experiments (22.5 ◦C). However, a temperature
decrease of just a few per cent in the model, so that βε = 7.7 for example, is sufficient to bring
fluid–fluid phase separation to accessible salt concentrations in the range 0.5–1.0 M. This is
in accordance with the observations of Muschol and Rosenberger [28] (but additional caution
is required since it is unlikely that the only effect of temperature is through the value of βε).
In the scaling representation of figure 4(a), such metastable fluid–fluid binodals also collapse
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Figure 4. (a) The data of figure 3(b) replotted in the (φ, Q−2cs ) plane. (b) Experimental
data of Poon et al [10], for Q = 8.0 (triangles), 9.4 (diamonds), and 11.4 (circles). Filled
(open) symbols indicate the occurrence (non-occurrence) of crystals. The dashed curve is the
approximate experimental crystallization boundary. The solid curve is the mean crystallization
boundary from (a).

to a quasi-universal curve—this is a prediction of the theory that would be interesting to test
experimentally.

The scaling collapse in figure 4 occurs because the effects of charge and salt in fluid free
energy are effectively combined into a single scaling variable cs/Q2, at salt concentrations in
the vicinity of the crystallization boundary. To show that this is not just a feature of Sear’s
model, I now turn briefly to the more commonly studied AHS model.

5.2. Adhesive hard-sphere model

The AHS model is also a suitable baseline model for the general theory in section 2. In this
model, HS interact with a short-range isotropic attractive potential. As noted by Rosenbaum
et al [5], the phase behaviour is largely insensitive to the details of the potential provided that
the second virial coefficient is used as the effective temperature axis. My approach to the
baseline model here is closely based on that of Noro et al [29] who investigated the effects of
long-range forces on the AHS model.

For the fluid phase, I use Barboy’s treatment of Baxter’s analytic theory [30]. In Baxter’s
theory [31], the attractive potential is characterized by a ‘stickiness’ parameter τ which is
related to the second virial coefficient by4

B(0)

2 /BHS
2 = 1 − (4τ )−1. (17)

The crystal phase is expected to be FCC since this has the greatest density of intersphere
contacts. As the stickiness is switched off (τ → ∞ or βε → 0), the fluid–crystal phase
transition goes over into the usual HS freezing transition, which is a contrast to Sear’s model.
The AHS ordered phase has always proved rather more difficult to treat analytically than the
fluid phase, and approaches have ranged through density functional calculations by Marr and
Gast [6], and Tejero and Baus [7], to detailed simulation studies [8]. Here I use the cell model
of Daanoun et al [32] for the crystal phase free energy, assuming that the attractive part of the
AHS potential is −ε(r/σ)−n with n � 1. The cell model free energy is almost identical to that
already used in equation (16) with ns = 12 for the FCC structure. The difference is that there

4 Barboy’s definition of τ differs from the present use and Baxter’s original work by a factor 6.
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Figure 5. (a) Phase behaviour in the (φ, τ ) plane for the AHS model with n = 30: solid curves
are for the baseline model with Q = c(R)

s = 0; the dashed curve is for Q = 10 and c(R)
s = 0.

The shaded region is the ‘danger zone’ equation (19). (b) Fluid–crystal binodals in the (φ, Q−2cs )

plane for Q = 8.0 (triangles), 9.4 (diamonds), and 11.4 (circles); other parameters are n = 30,
τ = 0.1.

is no restriction on orientation so the term − log(θ3
c /π2) is absent, and the role played by the

ad hoc cut-off function is taken over by the functional form of the actual short-range potential,
i.e. w[x] → (a/σ)−n. Like the choices for the cut-off function in the previous section, the
actual value of n may shift the phase boundaries but does not change the broad picture. For
the purposes of the present calculation I set n = 30.

A link between the cell model for the crystal phase and the Baxter–Barboy treatment of
the fluid phase can be made by matching B2 of equation (17) with the exact expression

B(0)

2 /BHS
2 = 1 + 3

∫ ∞

1
dx x2[1 − exp(−βεx−n)]. (18)

Figure 5(a) shows the phase behaviour for the model. The solid curve in this figure is the
fluid–crystal phase boundary for the baseline model, and the dashed curve is the corresponding
boundary for Q = 10 with no salt. Similarly to the case for figure 2(b), the effect of charge is
to narrow the fluid–crystal transition. As salt is added (not shown here), the boundary moves
back towards that of the baseline model.

There is a complication that arises for Baxter’s solution for the AHS fluid phase free
energy. Baxter’s theory involves the solution of a quadratic equation. If

τ <
(12φ + 6φ2)1/2 − 6φ

6(1 − φ)
, (19)

then this quadratic equation has complex roots and Baxter’s theory becomes inadmissible.
Normally this ‘danger zone’, shown shaded in figure 5(a), is happily hidden within the
fluid–crystal two-phase region. In the charged version though, it emerges into the single-
phase fluid region. For this reason one cannot choose τ < (2 − √

2)/6 ≈ 0.098, the
maximum of equation (19), and unfortunately this excludes τ = 0.067 which would match
B(0)

2 /BHS
2 = −2.7 from section 3.

To demonstrate the scaling collapse for this model, I therefore choose τ = 0.1 (equivalent
to B(0)

2 /BHS
2 = −1.5 [24]). I repeat the calculations of the previous section to obtain the

crystallization boundaries (fluid–crystal binodal) as a function of added salt, for Q = 8.0, 9.4,
and 11.4 as used previously. Figure 5(b) shows these boundaries plotted using the scaling
variable cs/Q2. Again the curves collapse to a quasi-universal crystallization boundary,
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Table 2. Lysozyme salt repartitioning data from Palmer et al [33]. The solution is
0.855 MNaCl/0.2 M NaAc buffer (pH = 4.5). Ion concentrations in the third column are calculated
by multiplying those in the second column by 1/(1 − φ), where φ = 0.64 is the crystal volume
fraction. The charge unaccounted for in the crystal, assuming Q = 11.4, is 0.05 M or �3% of the
total charge.

Concentration/M Solution Crystal Crystal free volume

LysozymeQ+ 0.056
Ac− 0.2
Na+ 1.055 0.19 0.53
Cl− 0.855 0.78 2.2

Na+ × Cl− 0.9 1.2

similarly to those in figure 4(a). This result confirms that the scaling collapse is a common
feature of two different baseline models for the phase behaviour.

6. Salt repartitioning and interface structure

These ideas have some additional interesting physical implications for the equilibrium between
crystals and solution which are explored in this section. The first implication concerns
salt repartitioning. In the simple theory of section 2, the product of coion and counterion
concentrations is a constant as in equation (3). Each phase has to be electrically neutral,
so a phase enriched in protein is also enriched in counterions, and consequently depleted in
coions (the Donnan common ion effect). This explains the slope of the tie lines in figure 3(a)
for example. We can ask: is there any independent evidence for this phenomenon? Let me
preface the answer to this by some cautionary remarks. Deviations from the simple Donnan
equilibrium result may arise from three sources. Firstly, excluded-volume effects mean that
one should really consider the small ion concentrations in the available free volume. This will
be an important consideration in the crystal phase where the volume fraction occupied by the
protein is ∼50%. Secondly, deviations from ideal solution behaviour can be expected at high
salt concentrations—such deviations are usually absorbed into ‘activity coefficients’. Thirdly,
there may be significant specific ion effects, such as those seen in the Hoffmeister series.

Repartitioning of salt was studied in detail by Vekilov et al [34]. They found non-uniform
salt concentrations inside protein crystals, but consider that this is likely to be an effect of
impurities or growth kinetics. The present theory only addresses the equilibrium repartitioning
of salt in perfect lysozyme crystals though. Fortunately, some relevant equilibrium results for
salt repartitioning can be found in recent experimental reports by Morozova et al [35] on
cross-linked lysozyme crystals in contact with salt solutions. For example, table 2 shows
concentrations of Na+ and Cl− in solution and in the crystal from the early work of Palmer
et al [33], cited by Morozova et al. There is marked repartitioning; for example the coion
concentration in the crystal free volume is about half that in the external solution. The product
of the two ion concentrations is approximately constant though (final row in table 2), provided
that the protein excluded volume is taken into account. Detailed calculations by Morozova
et al on their more recent data also take into account activity coefficients and give excellent
agreement between theory and experimental results: they conclude that ‘. . . for small ions
capable of penetrating into the crystal channels [the] electrostatic (Donnan) potential controls
the equilibrium internal concentration of ions in just the same way as in polyelectrolyte
gels’ [35]. By way of contrast, the same work also suggests that Br− has a significant specific
interaction with lysozyme.
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The second implication concerns the electrical structure of the interface between crystal
and solution phases. In a Donnan membrane equilibrium [13–15], an electrostatic potential
difference, the Donnan potential, develops between the two compartments on either side of the
membrane. In the present theory for protein crystallization, it is still true that a difference in
the mean electrostatic potential develops between the crystals and the solution phase. Whether
this should also be called a Donnan potential, a Galvani potential, or perhaps something else,
can be debated [36, 37].

At any rate, the potential difference is readily calculated given the salt repartitioning. If c+

and c− are the coion and counterion concentrations respectively, then c± = c(R)
s exp[∓βeϕ],

where ϕ is the mean electrostatic potential in the phase of interest measured relative to the salt
reservoir (this result can also be used to recover equation (3)). The difference in mean potential
between fluid (F) and crystal (X) phases,�ϕ = ϕ(X)−ϕ(F), is �ϕ = (βe)−1 log(c(F)

s /c(X)
s ). For

example, for the salt concentrations in table 2, c(F)
s = 1.055 M, c(X)

s = 0.53 M (in the free vol-
ume), and therefore �ϕ ≈ 17 mV. The potential difference arises because an electrical double
layer is formed at the crystal–solution interface and is intimately connected with salt reparti-
tioning. The details of this will be discussed in a forthcoming paper [38]. Another consequence
of the Donnan potential is that the pH in the crystal will be 0.434 �ϕ higher than in the solution
(where 0.434 = log10 e). If the solution pH is below the isoelectric point, as is often the case
for lysozyme, one might expect this to lower the charge per protein in the crystal although it
is unlikely that the charge can be determined with any accuracy from such a naive calculation.

Pair potential theories miss both the effects of salt repartitioning and the potential
difference between the two phases, which are essentially many-body phenomena [39, 40].
Whilst this is not a problem at high salt levels where Hill’s mapping between the McMillan–
Mayer/Debye–Hückel pair potential approach and Donnan’s method goes through [18], the
effects can be significant at lower salt concentrations. The importance of the effects can be
gauged by comparing the magnitude of �ϕ to the thermal energy kT . If �ϕ � kT/e, then there
may be significant errors introduced by using a single effective pair potential (such as a DLVO
potential) for both the crystal and the solution phases. On the other hand, if �ϕ � kT/e,
the use of pair potentials cannot be criticized on these grounds. It can easily be shown that
�ϕ � kT/e corresponds to the by now familiar cs � Qcp, in other words salt concentrations
smaller than the protein charge density in the crystal, which is typically 0.5 M.

7. Conclusions

There are several conclusions from the present work. The first concerns the lysozyme/NaCl
system. The quasi-universal crystallization boundary observed by Poon et al [10] can be fitted
reasonable well by the present version of Sear’s model with ∼6 sticky contacts/molecule,
similarly to the conclusions of other workers [25, 26]. The scaling collapse for B2 noticed
by Egelhaaf and Poon [12] is here attributed to a contribution Q2/4cs added to a ‘bare’ B(0)

2
which is approximately independent of salt concentration above about 0.25 M. In this system
therefore, NaCl appears to be acting as an indifferent electrolyte in the sense that it does not
seem to exhibit specific ion effects. This appears to be confirmed by the experiments of
Morozova et al [35] discussed in the preceding section. Other salts, for example NaBr, may
not behave the same way of course.

The other conclusions are general ones. Firstly, a simple extension of existing models to
incorporate salt ions and charge neutrality provides a straightforward explanation for the shape
of protein crystallization boundaries and the associated scaling properties seen for lysozyme.
Even if the present theory proves inadequate to describe the experiments in quantitative detail,
this is surely a robust observation. Secondly, there are a large number of effects which have
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been omitted from the present theory, but which could be incorporated with some additional
numerical effort, such as excluded-volume effects, non-ideality of the salt ions, and other
electrostatic correlation effects. Finally, the twin phenomena of salt repartitioning and the
concomitant appearance of a significant Donnan potential difference discussed in the previous
section are essentially many-body effects, and are not captured in simple pair potential theories.
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